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Abstract—This paper presents a novel approach to automatic
transcription of piano music in a context-dependent setting. This
approach employs convolutional sparse coding to approximate
the music waveform as the summation of piano note waveforms
(dictionary elements) convolved with their temporal activations
(onset transcription). The piano note waveforms are pre-recorded
for the specific piano to be transcribed in the specific environ-
ment. During transcription, the note waveforms are fixed and
their temporal activations are estimated and post-processed to
obtain the pitch and onset transcription. This approach works
in the time domain, models temporal evolution of piano notes,
and estimates pitches and onsets simultaneously in the same
framework. Experiments show that it significantly outperforms a
state-of-the-art music transcription method trained in the same
context-dependent setting, in both transcription accuracy and
time precision, in various scenarios including synthetic, anechoic,
noisy, and reverberant environments.

Index Terms—Automatic music transcription, piano transcrip-
tion, reverberation, convolutional sparse coding.

I. INTRODUCTION

A
UTOMATIC music transcription (AMT) is the process

of automatically inferring a high-level symbolic repre-

sentation, such as music notation or piano-roll, from a music

performance [1]. It has several applications in music education

(e.g., providing feedback to a piano learner), content-based

music search (e.g., searching songs with a similar bassline),

musicological analysis of non-notated music (e.g., Jazz impro-

visations and most non-Western music), and music enjoyment

(e.g., visualizing the music content).

Music transcription of polyphonic music is a challenging

task even for humans. It is related to ear training, a required

course for professional musicians on identifying pitches, in-

tervals, chords, melodies, rhythms, and instruments of music

solely by hearing. AMT for polyphonic music was first pro-

posed in 1977 by Moorer [2], and Piszczalski and Galler [3].

Despite almost four decades of active research, it is still an

open problem and current AMT systems cannot match human

performance in either accuracy or robustness [1].

A core problem of music transcription is figuring out which

notes are played and when they are played in a piece of

music. This is also called note-level transcription [4]. A

note produced by a pitched musical instrument has five basic

attributes: pitch, onset, offset, timbre and dynamic. Pitch
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is a perceptual attribute but can be reliably related to the

fundamental frequency (F0) of a harmonic or quasi-harmonic

sound [5]. Onset refers to the beginning time of a note, in

which the amplitude of that note instance increases from zero

to an audible level. This increase is very sharp for percussive

pitched instruments such as piano. Offset refers to the ending

time of a note, i.e., when the waveform of the note vanishes.

Compared to pitch and onset, offset is often ambiguous [4].

Timbre is the quality of a sound that allows listeners to

distinguish two sounds of the same pitch and loudness [5].

Dynamic refers to the player’s control over the loudness of

the sound; e.g., a piano player can strike a key with different

forces, causing notes to be soft or loud. The dynamic can also

change the timbre of a note; e.g., on a piano, notes played forte

have a richer spectral content than notes played piano [6]. In

this paper we focus on pitch estimation and onset detection of

notes from polyphonic piano performances.

In the literature, these two problems are often addressed sep-

arately and then combined to achieve note-level transcription

(see Section II). For onset detection, commonly used methods

are based on spectral energy changes in successive frames [7].

They do not model the harmonic relation of frequencies that

exhibit this change, nor the temporal evolution of partial

energy of notes. Therefore, they tend to miss onsets of soft

notes in polyphonic pieces and to detect false positives due

to local partial amplitude fluctuations caused by overlapping

harmonics, reverberation or beats [8].

Pitch estimation in monophonic music is considered a

solved problem [9]. In contrast, polyphonic pitch estimation

is much more challenging because of the complex interaction

(e.g., the overlapping harmonics) of multiple simultaneous

notes. To properly identify all the concurrent pitches, the

partials of the mixture must be separated and grouped into

clusters belonging to different notes. Most multi-pitch anal-

ysis methods operate in the frequency domain with a time-

frequency magnitude representation [1]. This approach has

two fundamental limitations: it introduces the time-frequency

resolution trade-off due to the Gabor limit [10], and it discards

the phase, which contains useful cues for the harmonic fusing

of partials [5]. Current state-of-the-art results are below 70%

in F-measure, which is too low for practical purposes, as

evaluated by MIREX 2015 on orchestral pieces with up to

5 instruments and piano pieces [11].

In this paper, we propose a novel time-domain approach

to transcribe polyphonic piano performances at the note-level.

More specifically, we model the piano audio waveform as a

convolution of note waveforms (i.e., dictionary templates) and
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their activation weights (i.e., transcription of note onsets). We

pre-learn the dictionary by recording the audio waveform of

each note of the piano, and then employ a recently proposed

efficient convolutional sparse coding algorithm to estimate

the activations. Compared to current state-of-the-art AMT ap-

proaches, the proposed method has the following advantages:

• The transcription is performed in the time domain and

avoids the time-frequency resolution trade-off by impos-

ing structural constraints on the analyzed signal – i.e.,

a context specific dictionary and sparsity on the atom

activations – resulting in better performance, especially

for low-pitched notes;

• It models temporal evolution of piano notes and estimates

pitch and onset simultaneously in the same framework;

• It achieves much higher transcription accuracy and time

precision compared to a state-of-the-art AMT approach;

• It works in reverberant environments and is robust to

stationary noise to a certain degree.

One important limitation of the proposed approach is that it

only works in a context-dependent setting, i.e., the dictionary

needs to be trained for each specific piano and acoustic

environment. While transcription of professionally recorded

performances is not possible, as the training data is not gen-

erally available, the method is still useful for musicians, both

professionals and amateurs, to transcribe their performances

with much higher accuracy than state-of-the-art approaches. In

fact, the training process takes less than 3 minutes to record

all 88 notes of a piano (each played for about 1 second). In

most scenarios, such as piano practices at home or in a studio,

the acoustic environment of the piano does not change, i.e.,

the piano is not moved and the recording device, such as a

smartphone, can be placed in the same spot, and the trained

dictionary can be re-used. Even for a piano concert in a new

acoustic environment, taking 3 minutes to train the dictionary

in addition to stage setup is acceptable for highly accurate

transcription of the performance throughout the concert.

A preliminary version of the proposed approach has been

presented in [12]. In this paper, we describe this approach in

more detail, conduct systematic experiments to evaluate its

key parameters, and show its superior performance against

a state-of-the-art method in various conditions. The rest of

the paper is structured as follows: Section II reviews note-

level AMT approaches and puts the proposed approach in

context. Section III reviews the basics of convolutional sparse

coding and its efficient implementation. Section IV describes

the proposed approach and Section V conducts experiments.

Finally, Section VI concludes the paper.

II. RELATED WORK

There are in general three approaches to note-level music

transcription. Frame-based approaches estimate pitches in

each individual time frame and then form notes in a post-

processing stage. Onset-based approaches first detect onsets

and then estimate pitches within each inter-onset interval.

Note-based approaches estimate notes including pitches and

onsets directly. The proposed method uses the third approach.

In the following, we will review methods of all these ap-

proaches and discuss their advantages and limitations.

A. Frame-based Approach

Frame-level multi-pitch estimation (MPE) is the key com-

ponent of this approach. The majority of recently proposed

MPE methods operate in the frequency domain. One group of

methods analyze or classify features extracted from the time-

frequency representation of the audio input [1]. Raphael [13]

used a Hidden Markov Model (HMM) in which the states

represent pitch combinations and the observations are spectral

features, such as energy, spectral flux, and mean and variance

of each frequency band. Klapuri [14] used an iterative spectral

subtraction approach to estimate a predominant pitch and

subtract its harmonics from the mixture in each iteration. Yeh

et al. [15] jointly estimated pitches based on three physical

principles – harmonicity, spectral smoothness and synchronous

amplitude evolution. More recently, Dressler [16] used a

multi-resolution Short Time Fourier Transform (STFT) in

which the magnitude of each bin is weighted by the bin’s

instantaneous frequency. The pitch estimation is done by

detecting peaks in the weighted spectrum and scoring them

by harmonicity, spectral smoothness, presence of intermediate

peaks and harmonic number. Poliner and Ellis [17] used

Support Vector Machines (SVM) to classify the presence of

pitches from the audio spectrum. Pertusa and Iñesta [18]

identified pitch candidates from spectral analysis of each

frame, then selected the best combinations by applying a set of

rules based on harmonic amplitudes and spectral smoothness.

Saito et al. [19] applied a specmurt analysis by assuming a

common harmonic structure of all the pitches in each frame.

Finally, methods based on deep neural networks are beginning

to appear [20]–[23].

Another group of MPE methods are based on statistical

frameworks. Goto [24] viewed the mixture spectrum as a

probability distribution and modeled it with a mixture of tied-

Gaussian mixture models. Duan et al. [25] and Emiya et

al. [26] proposed Maximum-Likelihood (ML) approaches to

model spectral peaks and non-peak regions of the spectrum.

Peeling and Godsill [27] used non-homogenous Poisson pro-

cesses to model the number of partials in the spectrum.

A popular group of MPE methods in recent years are

based on spectrogram factorization techniques, such as Non-

negative Matrix Factorization (NMF) [28] or Probabilistic

Latent Component Analysis (PLCA) [29]; the two methods

are mathematically equivalent when the approximation is

measured by Kullback-Leibler (KL) divergence. The first ap-

plication of spectrogram factorization techniques to AMT was

performed by Smaragdis and Brown [30]. Since then, many

extensions and improvements have been proposed. Grindlay et

al. [31] used the notion of eigeninstruments to model spectral

templates as a linear combination of basic instrument models.

Benetos et al. [32] extended PLCA by incorporating shifting

across log-frequency to account for vibrato, i.e., frequency

modulation. Abdallah et al. [33] imposed sparsity on the

activation weights. O’Hanlon et al. [34], [35] used structured

sparsity, also called group sparsity, to enforce harmonicity of

the spectral bases.

Time domain methods are far less common than frequency

domain methods for multi-pitch estimation. Early AMT meth-
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ods operating in the time domain attempted to simulate the

human auditory system with bandpass filters and autocorre-

lations [36], [37]. More recently, other researchers proposed

time-domain probabilistic approaches based on Bayesian mod-

els [38]–[40]. Bello et al. [41] proposed a hybrid approach

exploiting both frequency and time-domain information. More

recently, Su and Yang [42] also combined information from

spectral (harmonic series) and temporal (subharmonic series)

representations.

The closest work in the literature to our approach was

proposed by Plumbley et al. [43]. In that paper, the authors

proposed and compared two approaches for sparse decompo-

sition of polyphonic music, one in the time domain and the

other in the frequency domain. The time domain approach

adopted a similar shift-invariant (i.e., convolutional) sparse

coding formulation to ours. However, they used an unsuper-

vised approach and a complete transcription system was not

demonstrated due to the necessity of manual annotation of

atoms. The correct number of individual pitches in the piece

was also required in their approach. In addition, the sparse

coding was performed in 256-ms long windows using 128-ms

long atoms, thus not modeling the temporal evolution of notes.

As we will show in Section V-A, this length is not sufficient

to achieve good accuracy in transcription. Furthermore, the

system was only evaluated on very short music excerpts,

possibly because of the high computational requirements.

To obtain a note-level transcription from frame-level pitch

estimates, a post-processing step, such as a median filter [42]

or an HMM [44], is often employed to connect pitch estimates

across frames into notes and remove isolated spurious pitches.

These operations are performed on each note independently.

To consider interactions of simultaneous notes, Duan and

Temperley [45] proposed a maximum likelihood sampling

approach to refine note-level transcription results.

B. Onset-based Approach

In onset-based approaches, a separate onset detection stage

is used during the transcription process. This approach is

often adopted for transcribing piano music, given the relative

prominence of onsets compared to other types of instruments.

SONIC, a piano music transcription by Marolt et al., used an

onset detection stage to refine the results of neural network

classifiers [46]. Costantini et al. [47] proposed a piano music

transcription method with an initial onset detection stage to

detect note onsets; a single CQT window of the 64 ms

following the note attack is used to estimate the pitches

with a multi-class SVM classification. Cogliati and Duan [48]

proposed a piano music transcription method with an initial

onset detection stage followed by a greedy search algorithm

to estimate the pitches between two successive onsets. This

method models the entire temporal evolution of piano notes.

C. Note-based Approach

Note-based approaches combine the estimation of pitches

and onsets (and possibly offsets) into a single framework.

While this increases the complexity of the model, it has

the benefit of integrating the pitch information and the on-

set information for both tasks. As an extension to Goto’s

statistical method [24], Kameoka et al. [49] used so-called

harmonic temporal structured clustering to jointly estimate

pitches, onsets, offsets and dynamics. Berg-Kirkpatrick et

al. [50] combined an NMF-like approach in which each note

is modeled by a spectral profile and an activation envelope

with a two-state HMM to estimate play and rest states. Ewert

et al. [51] modeled each note as a series of states, each state

being a log-magnitude frame, and used a greedy algorithm to

estimate the activations of the states. In this paper, we propose

a note-based approach to simultaneously estimate pitches and

onsets within a convolutional sparse coding framework. A

preliminary version of this work was published in [12].

III. BACKGROUND

In this section, we present the background material for

convolutional sparse coding and its recently proposed efficient

algorithm to prepare the reader for its application to automatic

music transcription in Section IV.

A. Convolutional Sparse Coding

Sparse coding – the inverse problem of sparse representation

of a particular signal – has been approached in several ways.

One of the most widely used is Basis Pursuit DeNoising

(BPDN) [52]:

argmin
x

1

2
‖Dx− s‖2

2
+ λ‖x‖1, (1)

where s is a signal to approximate, D is a dictionary matrix,

x is the vector of activations of dictionary elements, and λ is

a regularization parameter controlling the sparsity of x.

Convolutional Sparse Coding (CSC), also called shift-

invariant sparse coding, extends the idea of sparse representa-

tion by using convolution instead of multiplication. Replacing

the multiplication operator with convolution in Eq. (1) we

obtain Convolutional Basis Pursuit DeNoising (CBPDN) [53]:

argmin
{xm}

1

2

∥

∥

∥

∥

∥

∑

m

dm ∗ xm − s

∥

∥

∥

∥

∥

2

2

+ λ
∑

m

‖xm‖
1
, (2)

where {dm} is a set of dictionary elements, also called filters;

{xm} is a set of activations, also called coefficient maps; and

λ controls the sparsity penalty on the coefficient maps xm.

Higher values of λ lead to sparser coefficient maps and lower

fidelity approximation to the signal s.

CSC has been widely applied to various image processing

problems, including classification, reconstruction, denoising

and coding [54]. In the audio domain, s represents the audio

waveform for analysis, {dm} represents a set of audio atoms,

and {xm} represents their activations. Its applications to audio

signals include music representations [43], [55] and audio

classification [56]. However, its adoption has been limited by

its computational complexity in favor of faster factorization

techniques, such as NMF or PLCA.

CSC is computationally very expensive, due to the presence

of the convolution operator. A straightforward implementation

in the time-domain [57] has a complexity of O(M2N2L),
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where M is the number of atoms in the dictionary, N is the

size of the signal and L is the length of the atoms.

B. Efficient Convolutional Sparse Coding

An efficient algorithm for CSC has recently been pro-

posed [54], [58]. This algorithm is based on the Alternating

Direction Method of Multipliers (ADMM) for convex opti-

mization [59]. The algorithm iterates over updates on three

sets of variables. One of these updates is trivial, and the other

can be computed in closed form with low computational cost.

The additional update consists of a computationally expensive

optimization due to the presence of the convolution operator.

A natural way to reduce the computational complexity of

convolution is to use the Fast Fourier Transform (FFT),

as proposed by Bristow et al. [60] with a computational

complexity of O(M3N). The computational cost of this

subproblem has been further reduced to O(MN) by exploiting

the particular structure of the linear systems resulting from the

transformation into the spectral domain [54], [58]. The overall

complexity of the resulting algorithm is O(MN logN) since

it is dominated by the cost of FFTs. The complexity does not

depend on the length of the atoms L as the atoms are zero-

padded to the length of the signal N .

IV. PROPOSED METHOD

In this section, we describe how we model the piano tran-

scription problem as a convolutional sparse coding problem

in the time domain, and how we apply the efficient CSC

algorithm [54], [58] to solve the problem.

A. Transcription process

The whole transcription process is illustrated with an ex-

ample in Fig. 1. Taking a monaural, polyphonic piano audio

recording s(t) as input (Fig. 1(b)), we approximate it with

a sum of dictionary elements dm(t), representing a typical,

amplitude-normalized waveform of each individual pitch of

the piano, convolved with their activation vectors xm(t):

s(t) ≃
∑

m

dm(t) ∗ xm(t). (3)

The dictionary elements dm(t) are pre-set by sampling all the

individual notes of a piano (see Section IV-A1) and are fixed

during transcription. The activations xm(t) are estimated using

the efficient convolutional sparse coding algorithm [54], [58].

Note that the model is based on an assumption that the wave-

forms of the same pitch do not vary much with dynamic and

duration. This assumption seems to be over-simplified, yet we

will show that it is effective in the experiments. We will also

discuss its limitations and how to improve the model in Sec-

tion IV-B. Ideally, these activation vectors are impulse trains,

with each impulse indicating the onset of the corresponding

note at a certain time. In practice, the estimated activations

contain some noise (Fig. 1(c)). After post-processing, however,

they look like impulse trains (Fig. 1(d)), and recover the

underlying ground-truth note-level transcription of the piece

(Fig. 1(a)). Details of these steps are explained below.

(a) Ground truth piano roll

[s]
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(b) Waveform
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(c) Raw activations
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(d) Binarized Activations

Fig. 1. Piano roll (a), waveform produced by an acoustic piano (b), raw
activation vectors (c) and the final detected note onsets (d) of Bach’s Minuet
in G major, BWV Anh 114, from the Notebook for Anna Magdalena Bach.
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1) Training: The dictionary elements are pre-learned in a

supervised manner by sampling each individual note of a piano

at a certain dynamic level, e.g., forte, for 1 s. We used a

sampling frequency of 11,025 Hz to reduce the computational

workload during the experiments. The length was selected

by a parameter search (see Section V-A). The choice of the

dynamic level is not critical, even though we observed that

louder dynamics produce better results than softer dynamics.

2) Convolutional sparse coding: The activation vectors are

estimated from the audio signal using an open source im-

plementation [61] of the efficient convolutional sparse coding

algorithm described in Section III-B. The sampling frequency

of the audio mixture to be transcribed must match the sampling

frequency used for the training stage, so we downsampled the

audio mixtures to 11,025 Hz. As described in Section V-A,

we investigated the dependency of the performance on the

parameter λ on an acoustic piano dataset and selected the best

value, λ = 0.005. We then used the same value for all ex-

periments covering synthetic, anechoic, noisy and reverberant

scenarios. We used 500 iterations in our experiments, even

though we observed that the algorithm usually converges after

approximately 200 iterations.

The result of this step is a set of raw activation vectors,

which can be noisy due to the mismatch between the atoms in

the dictionary and notes in the audio mixture (see Fig. 1 (c)).

Note that no non-negativity constraints are applied in the

formulation, so the activations can contain negative values.

Negative activations can appear in order to correct mismatches

in loudness and duration between the dictionary element and

the actual note in the sound mixture. However, because the

waveform of each note is quite consistent across different

instances (see Section IV-B), the strongest activations are

generally positive.

3) Post-processing: We perform peak picking by detecting

local maxima from the raw activation vectors to infer note

onsets. However, because the activations are noisy, multiple

closely located peaks are often detected from the activation

of one note. To deal with this problem, we only keep the

earliest peak within a 50 ms window and discard the others.

This enforces local sparsity of each activation vector. We

choose 50 ms because it represents a realistic limit on how

fast a performer can play the same note repeatedly. In fact,

Fig. 2 shows the distribution of the time intervals between two

consecutive activations of the same note in the ENSTDkCl

collection of the MAPS dataset [26]. No interval is shorter

than 50 ms.

4) Binarization: The resulting peaks are also binarized to

keep only peaks that are higher than 10% of the highest

peak in the entire activation matrix. This step is necessary

to reduce ghost notes, i.e., false positives, and to increase

the precision of the transcription. The value was chosen by

comparing the RMS of each note played forte with the RMS

of the corresponding note played piano in the isolated note

collection of MAPS (ENSTDkCl set). The average ratio is

6.96, with most of the ratios below 10. This threshold is not

tuned and is kept fixed throughout our experiments.

Inter onset duration [s]
0 0.1 0.2 0.3 0.4 0.5

C
ou

nt

0

500

1000

1500

Fig. 2. Distribution of the time intervals between two consecutive activations
of the same note in the ENSTDkCl collection of the MAPS dataset [26]. The
distribution has been truncated to 0.5 s for visualization.

B. Discussion

The proposed model is based on the assumption that the

waveform of a note of the piano is consistent when the note is

played at different times at the same dynamic. This assumption

is valid, thanks to the mechanism of piano note production [6].

Each piano key is associated with a hammer, one to three

strings, and a damper that touches the string(s) by default.

When the key is pressed, the hammer strikes the string(s) while

the damper is raised from the string(s). The string(s) vibrate

freely to produce the note waveform until the damper returns

to the string(s), when the key is released. The frequency of

the note is determined by the string(s); it is stable and cannot

be changed by the performer (e.g., vibrato is impossible).

The loudness of the note is determined by the velocity of

the hammer strike, which is affected by how hard the key

is pressed. The force applied to the key is the only control

that the player has over the onset articulation. Modern pianos

generally have three foot pedals: sustain, sostenuto, and soft

pedals; some models omit the sostenuto pedal. The sustain

pedal is commonly used. When it is pressed, all dampers of

all notes are released from all strings, regardless whether a

key is pressed or released. Therefore, its usage only affects

the offset of a note, if we ignore the sympathetic vibration of

strings across notes.

Fig. 3 shows the waveforms of four different instances of the

C4 note played on an acoustic piano at two dynamic levels.

We can see that the three f notes are very similar, even in

the transient region of the initial 20 ms. The waveform of

the the mf note is slightly different, but still resembles the

other waveforms after applying a global scaling factor. Our

assumption is that softer dynamics excite fewer modes in the

vibration of the strings, resulting in less rich spectral content

compared to louder dynamics. However, because the spectral

envelope of piano notes is monotonically decreasing, higher

partials have less energy compared to lower partials, so softer

notes can still be approximated with notes played at louder

dynamics. To prove the last assertion, we compared an instance

of a C4 note played forte with different instances of the same
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TABLE I
PEARSON CORRELATION COEFFICIENTS OF A SINGLE C4 NOTE PLAYED

forte WITH THE SAME PITCH PLAYED AT DIFFERENT DYNAMIC LEVELS

AND WITH DIFFERENT PITCHES. VALUES SHOWN ARE THE MAXIMA IN

ABSOLUTE VALUE OVER ALL THE POSSIBLE ALIGNMENTS.

Note Correlation Coefficient

C4 f #1 0.989
C4 f #2 0.969
C4 f #3 0.977
C4 mf #1 0.835
C4 mf #2 0.851
C4 mf #3 0.837
C4 p #1 0.608
C4 p #2 0.602
C4 p #3 0.606
C5 f #1 -0.144
C5 f #2 -0.146
C5 f #3 -0.143
G4 f #1 -0.016
G4 f #2 -0.019
D4 f #1 0.042
D4 f #2 -0.042

pitch played at different dynamics and also with different

pitches. As we can see from Table I, different instances of the

same pitch are highly correlated, regardless of the dynamic,

while the correlation between different pitches is low.

0 0.01 0.02 0.03 0.04

C
4 

f

-1

0

1

0 0.01 0.02 0.03 0.04

C
4 

f

-1

0

1

0 0.01 0.02 0.03 0.04

C
4 

f

-1

0

1

[s]
0 0.01 0.02 0.03 0.04

C
4 

m
f

-1

0

1

Fig. 3. Waveforms of four different instances of note C4 played manually
on an acoustic piano, three at forte (f) and one at mezzo forte (mf). Their
waveforms are very similar, after appropriate scaling.

As discussed in Section II, Plumbley et al. [43] suggested

a model similar to the one proposed here. The efficient CSC

algorithm has also been applied to a score-informed source

separation problem by Jao et al. in [62]. This method used

very short atoms (100 ms), which might be a limiting factor

as we prove in Section V, however this limitation may be

mitigated, especially for sustaining instruments, by including

4 templates per pitch.

The proposed method can operate online by segmenting the

audio input into 2 s windows, and retaining the activations for

the first second. The additional second of audio is necessary

to avoid the border effects of the circular convolution. Initial

experiments show that the performance of the algorithm is

unaffected by online processing, with the exception of silent

frames. As the binarization step is performed in each win-

dow, silent frames introduce spurious activations in the final

transcription, so an additional step to detect silent frames,

either with a global thresholding or an adaptive filter, is

required. Since the computation time of the algorithm is

linear in the length of the signal, a shorter signal does not

make the algorithm run in real-time in our current CPU-

based implementation, which runs in about 5.9 times the

length of the signal, but initial experiments with a GPU-based

implementation of the CSC algorithm suggest that real-time

processing is achievable.

V. EXPERIMENTS

We conduct experiments to answer two questions: (1) How

sensitive is the proposed method to key parameters such as

the sparsity parameter λ, and the length and loudness of

the dictionary elements? (2) How does the proposed method

compare with state-of-the-art piano transcription methods in

different settings such as anechoic, noisy, and reverberant

environments?

For the experiments we used three different datasets: the

ENSTDkCl (close-mic acoustic recordings) and the SptkBGCl

(synthetic recordings) collections from the MAPS dataset [26],

and another synthetic dataset we created specially for this

paper, using MIDI files in the ENSTDkCl collection. We will

call this dataset ENSTGaSt.

The ENSTDkCl dataset is used to validate the proposed

method in a realistic scenario. This collection contains 30

pieces of different styles and genres generated from high

quality MIDI files that were manually edited to achieve

realistic and expressive performances. The MIDI files will

be used as the ground-truth for the transcription. The pieces

were played on a Disklavier, which is an acoustic piano with

mechanical actuators that can be controlled via MIDI input,

and recorded in a close microphone setting to minimize the

effects of reverb. The SptkBGCl dataset uses a virtual piano,

the Steinway D from The Black Grand by Sampletekk. For

both datasets, MAPS also provides the 88 isolated notes, each

1 s long, played at three different dynamics: piano (MIDI

velocity 29), mezzo-forte (MIDI velocity 57) and forte (MIDI

velocity 104). We always use the forte templates for all the

experiments, except for the experiment investigating the effect

of the dynamic level of the dictionary atoms. The synthetic

dataset is also useful to set a baseline of the performance in

an ideal scenario, i.e., absence of noise and reverb.

The ENSTGaSt dataset was created to investigate the depen-

dency of the proposed method on the length of the dictionary

elements, as note templates provided in MAPS are only 1

s long. The dataset was also used to verify some alignment

issues that we discovered in the ground truth transcriptions

of the ENSTDkCl and SptkBGCl collections of MAPS. The

ENSTGaSt dataset was created from the same 30 pieces in

the ENSTDkCl dataset and re-rendered from the MIDI files

using a digital audio workstation (Logic Pro 9) with a sampled

virtual piano plug-in (Steinway Concert Grand Piano from the
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Garritan Personal Orchestra); no reverb was used at any stage.

The details of the synthesis model, i.e., the number of different

samples per pitch and the scaling of the samples with respect

to the MIDI velocity, are not publicly available. To gain some

insight on the synthesis model we generated 127 different

instances of the same pitch, i.e., C4, one for each value of

the valid MIDI velocities, each 1 s long. We then compared

the instances with cross correlation and determined that the

virtual instrument uses 4 different samples per pitch, and that

the amplitude of each sample is exponentially scaled based

on the MIDI velocity. To ensure the replicability of this set

of experiments, the dataset is available on the first author’s

website1.

We use F-measure to evaluate the note-level transcrip-

tion [4]. It is defined as the harmonic mean of precision

and recall, where precision is defined as the percentage of

correctly transcribed notes among all transcribed notes, and

recall is defined as the percentage of correctly transcribed

notes among all ground-truth notes. A note is considered

correctly transcribed if its estimated discretized pitch is the

same as a reference note in the ground-truth and the estimated

onset is within a given tolerance value (e.g., ± 50 ms) of the

reference note. We do not consider offsets in deciding the

correctness.

A. Parameter Dependency

To investigate the dependency of the performance on the

parameter λ, we performed a grid search with values of λ

logarithmically spaced from 0.4 to 0.0004 on the ENSTDkCl

collection in the MAPS dataset [26]. The dictionary elements

were 1 s long. The results are shown in Fig. 4. As we can

observe from Fig. 4, the method is not very sensitive to the

value of λ. For a wide range of values, from 0.0004 to about

0.03, the average F-measure is always above 80%.
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Fig. 4. Average F-measure on the 30 pieces in the ENSTDkCl collection
(close-mic acoustic recordings) of the MAPS dataset for different values of
λ, using 1 s long atoms.

We also investigated the performance of the method with

respect to the length of the dictionary elements, using the

1http://www.ece.rochester.edu/∼acogliat/repository.html

ENSTGaSt dataset. The average F-measure versus the length

over all the pieces is shown in Fig. 5. The sparsity parameter

λ is fixed at 0.005. The highest F-measure is achieved when

the dictionary elements are 1 second long. The MAPS dataset

contains pieces of very different styles, from slow pieces with

long chords, to virtuoso pieces with fast runs of short notes.

Our intuition suggested that longer dictionary elements would

provide better results for the former, and shorter elements

would be more appropriate for the latter, but we discovered

that longer dictionary elements generally give better results for

all the pieces.
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Fig. 5. Average F-measure on the 30 pieces in the ENSTGaSt dataset versus
dictionary atom length, with λ fixed at 0.005.

Finally, we investigated the effect of the dynamic level

of the dictionary atoms, using the ENSTDkCl collection. In

general we found the proposed method to be very robust to

differences in dynamic levels, but we obtained better results

when louder dynamics were used during training. A possible

explanation can be seen in Fig. 6 and Fig. 7. In Fig. 6 we

transcribed a signal consisting of a single C4 note played

piano with a dictionary of forte notes. The second most active

note shows strong negative activations, which do not influence

the transcription, as we only consider positive peaks. The

negative activations might be due to the partials with greater

amplitude contained in the forte dictionary element but not

present in the piano note; i.e., CSC tries to achieve a better

reconstruction by subtracting some frequency content. On the

other side, in Fig. 7 we tested the opposite scenario, a single

C4 note reconstructed forte with a dictionary of piano notes.

The second most active note shows both positive and negative

activations; positive activations might potentially lead to false

positives. In this case, the forte note contains some spectral

content not present in the piano template, so CSC improves the

signal reconstruction by adding other note templates. Negative

activations also appear when there is a mismatch between the

length of a note in the audio signal and the length of the

dictionary element. Using multiple templates per pitch, with

different dynamics and different lengths, might reduce the

occurrence of negative activations at the expense of increased

computational time.
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Fig. 6. Raw activations of the two most active note templates when
transcribing a piano C4 note with 88 forte note templates. Note that the
activation of the wrong note template is mostly negative.
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Fig. 7. Raw activations of the two most active note templates when
transcribing a forte C4 note with 88 piano note templates. Note that the
activation of the wrong note template contains a strong positive portion, which
may lead to false positives in the final transcription.

B. Comparison to State of the Art

We compared our method with a state-of-the-art AMT

method proposed by Benetos and Dixon [32], which was

submitted for evaluation to MIREX 2013 as BW3 [63]. The

method will be referred to as BW3-MIREX13. This method

is based on probabilistic latent component analysis of a log-

spectrogram energy and uses pre-extracted note templates from

isolated notes. The templates are also pre-shifted along the log-

frequency in order to support vibrato and frequency deviations,

which are not an issue for piano music in the considered

scenario. The method is frame-based and does not model

the temporal evolution of notes. To make a fair comparison,

dictionary templates of both BW3-MIREX13 and the proposed

method were learned on individual notes of the piano that was

used for the test pieces. We used the implementation provided

by the author along with the provided parameters, with the

only exception of the hop size, which was reduced to 5 ms to

test the onset detection accuracy.

1) Anechoic Settings: For this set of experiments we tested

multiple onset tolerance values to show the highest onset

precision achieved by the proposed method. The dictionary

elements were 1 s long. We used the forte templates. The

sparsity parameter λ was fixed at 0.005. The results are shown

in Figs. 8-10. From the figures, we can notice that the proposed

method outperforms BW3-MIREX13 by at least 20% in

median F-measure for onset tolerance of 50 ms and 25 ms

(50 ms is the standard onset tolerance used in MIREX [4]).

When using dictionary elements played at piano dynamic, the

median F-measure on the ENSTDkCl collection of the MAPS

dataset drops to 70% (onset tolerance set at 50 ms). In the

experiment with the ENSTGaSt dataset, shown in Fig. 8, the

proposed method exhibits consistent accuracy of over 90%

regardless of the onset tolerance, while the performance of

BW3-MIREX13 degrades quickly as the tolerance decreases

under 50 ms. The proposed method maintains a median F-

measure of 90% even with an onset tolerance of 5 ms. In the

experiment on acoustic piano, both the proposed method and

BW3-MIREX13 show a degradation of the performances with

small tolerance values of 10 ms and 5 ms.
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Fig. 8. F-measure for 30 pieces in the ENSTGaSt dataset (synthetic record-
ings). Each box contains 30 data points.
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Fig. 9. F-measure for 30 pieces in the SptkBGCl dataset (synthetic record-
ings). Each box contains 30 data points.
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Fig. 10. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of the MAPS dataset. Each box contains 30 data points.

The degradation of performance on ENSTDkCl and Sp-

tkBgCl with small tolerance values, especially the increased

support in the distribution of F-measure at 10 ms and 5 ms,

drove us to further inspect the algorithm and the ground truth.

We noticed that the audio and the ground truth transcription in

the MAPS database are in fact not consistently lined up, i.e.,

different pieces show a different delay between the activation

of the note in the MIDI file and the corresponding onset in

the audio file. Fig. 11 shows two files from the ENSTDkCl

collection of MAPS. Fig. 11(b) shows a good alignment

between the audio and MIDI onsets, but in Fig. 11(a) the

MIDI onsets occur 15 ms earlier than audio onsets. This

inconsistency may be responsible for the poor results with

small tolerance values.

To test this hypothesis we re-aligned the ground truth with

the audio by picking the mode of the onset differences for the

correctly identified notes by the proposed method per piece.

With the aligned ground truth, the results on the SptkBgCl

dataset for 10 ms of tolerance are similar to the ones on

the ENSTGaSt dataset; for 5 ms, the minimum F-measure

is increased to 52.7% and the median is increased to 80.2%.

On the ENSTDkCl dataset, the proposed method increases the

median F-measure by about 15% at 10 ms and 5 ms. It might

be argued that the improvement might be due to a systematic

timing bias in the proposed method. However, as shown in

Fig. 8, the transcription performance of the proposed method

on the ENSTGaSt dataset does not show clear degradation

when the onset tolerance becomes smaller. This suggests

that there are some alignment problems between the audio

and ground-truth MIDI transcription in the SptkBGCl and

ENSTDkCl collections of MAPS. This potential misalignment

issue only becomes prominent when evaluating transcription

methods with small onset tolerance values, which are rarely

used in the literature. Therefore, we believe that this issue

requires additional investigations from the research community

before our modified ground-truth can be accepted as the

correct one. We thus make the modified ground-truth public

on the first author’s website, but still use the original non-

modified ground truth in all experiments in this paper.

(a) Debussy’s Claire de Lune (deb cla) from ENSTDkCl.

(b) Borodin’s Piano Sonata 6 (bor ps6) from ENSTDkCl.

Fig. 11. Two pieces from the ENSTDkCl collection in MAPS showing
different alignments between audio and ground truth MIDI notes (each red
bar represents a note, as in a MIDI pianoroll). The figures show the beginning
of the two pieces. The audio files are downmixed to mono for visualization.
The time axis is in seconds.

2) Robustness to Pitch Range and Polyphony: Fig. 12

compares the average F-measure achieved by the two methods

along the different octaves of a piano keyboard. The figure

clearly shows that the results of BW3-MIREX13 depend on

the fundamental frequencies of the notes; the results are very

poor for the first two octaves, and increase monotonically

for higher octaves, except for the highest octave, which is

not statistically significant. The proposed method shows a

more balanced distribution. This suggests the advantage of

our time-domain approach in avoiding the time-frequency

resolution trade-off. We do not claim that operating in the time

domain automatically overcomes the time-frequency trade-

off, and explain the high accuracy of the proposed method

as follows. Each dictionary atom contains multiple partials

spanning a wide spectral range, and the relative phase and

magnitude of the partials for a given note have low variability

across instances of that pitch. This, together with the sparsity

penalty, which limits the model complexity, allows for good

performance without violating the fundamental time-frequency

resolution limitations.

The proposed algorithm is less sensitive to the polyphony

of the pieces compared to BW3-MIREX13. For each piece in

the ENSTDkCl collection of MAPS we calculated the average
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Fig. 12. Average F-measure per octave for the 30 pieces in the ENSTDkCl
collection (close-mic acoustic recordings) of the MAPS dataset. Onset toler-
ance 50 ms. λ set to 0.005. The letters on the horizontal axis indicate the
pitch range, the numbers show the total number of notes in the ground truth
for the corresponding octave.

polyphony by sampling the number of concurrently sounding

notes every 50 ms. The results are shown in Fig. 13. BW3-

MIREX13 shows a pronounced degradation in performance

for denser polyphony, while the proposed method only shows

minimal degradation.
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Fig. 13. F-measure of the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS versus average instantaneous polyphony. The
orange line shows the linear regression of the data points.

Fig. 14 shows the results on the individual pieces of the

ENSTDkCl collection of MAPS. The proposed method out-

performs BW13-MIREX13 for all pieces except for two, for

which the two methods achieve the same F-measure – Mozart’s

Sonata 333, second movement (mz 333 2) and Tchaikovsky’s

May - Starlight Nights (ty mai) from The Seasons. The def-

inite outlier is Schuman’s In Slumberland (scn15 12), which

is the piece with the worst accuracy for both the proposed

method and BW13-MIREX13; it is a slow piece with the

highest average polyphony in the dataset (see Fig. 13). The

piece with the second worst score is Tchaikovsky’s May -

Starlight Nights (ty mai); again a slow piece but with a lower

average polyphony. A very different piece with an F-measure

still under 70% is Listz’s Transcendental Étude no. 5 (liz et5);

it is a very fast piece with many short notes and high average

polyphony. Further research is needed to investigate why a

lower accuracy resulted from these pieces.
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Fig. 14. Individual F-measures of the 30 pieces in the ENSTDkCl collection
(close-mic acoustic recordings) of MAPS. Proposed method in blue circles,
BW-MIREX13 in orange crosses.

3) Robustness to Noise: In this section, we investigate the

robustness of the proposed method to noise, and compare the

results with BW3-MIREX13. We used the original noiseless

dictionary elements with length of 1 second and tested both

white and pink additive noisy versions of the ENSTDkCl col-

lection of MAPS. White and pink noises can represent typical

background noises (e.g., air conditioning) in houses or practice

rooms. We used the same parameter settings: λ = 0.005 and

1 s long, forte templates. The results are shown in Fig. 15 and

Fig. 16. As we can notice from the plots, the proposed method

shows great robustness to white noise, even at very low SNRs,

always having a definite advantage over BW3-MIREX13. The

proposed method consistently outperforms BW3-MIREX13 by

about 20% in median F-measure, regardless of the level of

noise. The proposed method is also very tolerant to pink noise

and outperforms BW3-MIREX13 with low and medium levels

of noise, up to an SNR of 5 dB.

4) Robustness to Reverberation: In the third set of exper-

iments we tested the performance of the proposed method in

the presence of reverberation. Reverberation exists in nearly all

real-world performing and recording environments, however,

few systems have been designed and evaluated in reverber-

ant environments in the literature. Reverberation is not even

mentioned in recent surveys [1], [64]. We used a real impulse

response of an untreated recording space2 with an RT60 of

2WNIU Studio Untreated from the Open AIR Library http://www.
openairlib.net/auralizationdb/content/wniu-studio-untreated
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Fig. 15. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with white noise at different SNR levels. Each
box contains 30 data points.
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Fig. 16. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with pink noise at different SNR levels. Each
box contains 30 data points.

about 2.5 s, and convolved it with both the dictionary elements

and the audio files. The results are shown in Fig. 17. As we can

notice, the median F-measure is reduced by about 3% for the

proposed method in presence of reverb, showing a high robust-

ness to reverb. The performance of BW3-MIREX13, however,

degrades significantly, even though it was trained on the same

reverberant piano notes. This further shows the advantage of

the proposed method in real acoustic environments.

5) Sensitivity to Environment Mismatch: To illustrate the

sensitivity of the method to the acoustic environment, we

generated two synthetic impulse responses with RIR Gen-

erator [65], one with RT60 equal to 500 ms and the other

with RT60 equal to 250 ms. These two values were picked

to simulate an empty concert hall, and the same hall with an

Close Mike Reverberant
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Fig. 17. F-measure for the 30 pieces in the ENSTDkCl collection (close-mic
acoustic recordings) of MAPS with reverb. Each box contains 30 data points.

audience, whose presence reduces the reverberation time by

adding absorption to the acoustic environment. We applied the

longer impulse response to the dictionary and the shorter one

to the 30 pieces in the ENSTDkCl collection of MAPS. The

median F-measure for the experiment decreases from 82.7%,

as in Fig. 10, to 75.2%. It should be noted that this is an

extreme scenario, as a typical application would use a close

mic setup, reducing the influence of the room acoustics.

6) Runtime: We ran all the experiments on an iMac

equipped with a 3.2 GHz Intel Core i5 processor and 16 GB

of memory. The code was implemented in MATLAB. For the

30 pieces in the ENSTDkCl collection of MAPS, the median

runtime was 174 s, with a maximum of 186 s. Considering

that we transcribed the first 30 s of each piece, the entire

process takes about 5.9 times the length of the signal to be

transcribed. Initial experiments with GPU implementation of

the CSC algorithm show an average speedup of 10 times with

respect to the CPU implementation.

VI. DISCUSSION AND CONCLUSIONS

In this paper we presented an automatic music transcription

algorithm based on convolutional sparse coding in the time-

domain. The proposed algorithm consistently outperforms a

state-of-the-art algorithm trained in the same scenario in all

synthetic, anechoic, noisy, and reverberant settings, except for

the case of pink noise at 0 dB SNR. The proposed method

achieves high transcription accuracy and time precision in a

variety of different scenarios, and is highly robust to moderate

amounts of noise. It is also highly insensitive to reverb, as long

as the training session is performed in the same environment

used for recording the audio to be transcribed. However, a

limited generalization to a different room acoustic has been

shown in the experiments.

While in this specific context the proposed method is clearly

superior to the state-of-the-art algorithm used for comparison

(BW3-MIREX13 [32]), it must be noted that our method
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cannot, at the moment, generalize to different contexts. In par-

ticular, it cannot transcribe performances played on different

pianos not used for the training. Preliminary experiments with

transcribing the ENSTDkCl dataset using the dictionary from

the SptkBGCl dataset show a dramatic drop in precision result-

ing in an average F-measure of 16.9%; average recall remains

relatively high at 64.7%. BW3-MIREX13 and, typically, other

spectral domain-based methods are capable of being trained on

multiple instruments and generalize to different instruments of

the same kind. Nonetheless, the proposed context-dependent

approach is useful in many realistic scenarios, considering

that pianos are usually fixed in homes or studios. Moreover,

the training procedure is simple and fast, in case the context

changes. Future research is needed to adapt the dictionary to

different pianos.

The proposed method cannot estimate note offsets or dy-

namics, even though the amplitude of the raw activations

(before binarization) is proportional to the loudness of the

estimated notes. A dictionary containing notes of different

lengths and different dynamics could be used in order to

estimate those two additional parameters, even though group

sparsity constraints should probably be introduced in order to

avoid concurrent activations of multiple templates for the same

pitch.

Another interesting future research direction is to evaluate

the model on other percussive and plucked pitched instru-

ments, such as harpsichord, marimba, bells and carillon, given

the consistent nature of their notes and the model’s ability to

capture temporal evolution.
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